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We report a theoretical and experimental investigation into the fundamental physics of why loose granular
media are effective deadeners of structure-borne sound. Here, we demonstrate that a measurement of the

effective mass, M̃���, of the granular medium is a sensitive and direct way to answer the question: what is the
specific mechanism whereby acoustic energy is transformed into heat? Specifically, we apply this understand-
ing to the case of the flexural resonances of a rectangular bar with a grain-filled cavity within it. The pore space

in the granular medium is air of varying humidity. The dominant features of M̃��� are a sharp resonance and
a broad background, which we analyze within the context of simple models. We find that: �a� on a fundamental
level, dampening of acoustic modes is dominated by adsorbed films of water at grain-grain contacts, not by
global viscous dampening or by attenuation within the grains. �b� These systems may be understood, qualita-
tively, in terms of a height-dependent and diameter-dependent effective sound speed ��100–300 �m·s−1�� and
an effective viscosity ��5�104 Poise�. �c� There is an acoustic Janssen effect in the sense that, at any
frequency, and depending on the method of sample preparation, approximately one-half of the effective mass
is borne by the side walls of the cavity and one-half by the bottom. �d� There is a monotonically increasing
effect of humidity on the dampening of the fundamental resonance within the granular medium which trans-
lates to a nonmonotonic, but predictable, variation in dampening within the grain-loaded bar.
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I. INTRODUCTION

Loose grains, made of a variety of different materials,
dampen structure-borne acoustic signals very efficiently
when they partially fill cavities within the structure itself
�1–3�. For this reason, there is a practical motivation to de-
velop an effective method to optimize the dampening of un-
wanted structure-borne acoustic signals. The fundamental
origins of the dissipation mechanisms in granular materials
are still unknown, however, making it difficult to optimize
the effect. Partly, this is because, until now, it has not been
possible to study the relevant properties of the granular me-
dium directly, independent of the structure whose acoustic
properties are being modified by the granular medium. In
this article, we will answer the questions: where does the
acoustic energy go when it is attenuated by granular media?
What is the specific microscopic mechanism?

Here, we pursue the concept of the effective mass, M̃���,
of a loose granular aggregate contained within a rigid cavity
�4,5�; a preliminary report on some of our results has been

published previously �6�. M̃��� is determined by simulta-
neously measuring the force, F���, on the cavity and its
acceleration, a���, when the cavity undergoes oscillation at a
frequency �. This measurement allows us to focus very di-
rectly on those properties of the granular medium which af-
fect the propagation and attenuation of structure-borne
sound. Specifically, if an identically filled cavity is located
within an acoustically resonant structure, we demonstrate
how to predict the changes in the acoustic properties of the
structure, such as sound attenuation or resonance-frequency

shift, based on a knowledge of M̃���. This fact allows us to
focus our efforts on understanding the relevant properties of
the granular medium directly, rather than having to infer its

properties via its effects on the host structure. In this regard,
we demonstrate the dominant effect of humidity, both on
M̃��� and on the acoustic resonance of a steel bar having a
grain-filled cavity.

There have been several previous investigations into the
origins of particle damping. Cremer and Heckl �2� concluded
that damping is especially high when the �vertical� thickness
of a granular layer is equal to an odd multiple of a quarter
wavelength in the granular medium. Sun et al. �7� have
treated the acoustic effect of the granular medium as if it was
due to radiative damping; they computed the acoustic loss
due to radiation by assuming the granular medium is a low-
velocity fluid. Bourinet and Le Houèdec �3� and Varanasi and
co-workers �8,9� have each considered the acoustic propaga-
tion characteristics of long hollow tubes, partially filled with
granular material. Each approximated the medium as a low-
velocity, high attenuation fluid and each achieved quite rea-
sonable agreement between their computed and their mea-
sured values. �The two theories are similar but differ in their
details.� We do not dispute these aforementioned results,
which are, in fact, quite reasonable. We point out, though,
that the relevant granular medium parameters �the sound
speed, the loss factor� are generally set by requiring a match
to the observed acoustic characteristics of the grain-loaded
structure. �An exception is Ref. �9�.� It is this last feature that
we obviate in the present article: For the kinds of structures
we consider here, acoustic loss is determined by the imagi-
nary component of the effective mass, M2���, evaluated at
the propagation frequency �or resonant frequency, as the case
may be�. Moreover, we establish that the properties of granu-
lar media are very much dependent on the filling level in the
cavity and we demonstrate that the side walls of the cavity
hold up some of the dynamic load. Thus, the granular mate-
rial cannot be idealized, for acoustic purposes, as a fluid, and
certainly not a homogeneous one.
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Intuitively, one might expect that the effect of the granular
loading would be to lower the resonance frequency of the
structure holding the grains. While this often happens, we
show situations in which the real part of M̃��� is negative in
the frequency range of interest, leading to an increase in the
resonant frequency of the structure containing the grains.
This behavior has been observed before by Kang et al. �10�,
who monitored the resonances in a clamped plate as more
and more grains were loaded on top of it. Initially, as grains
are added, the resonance-frequency drops; it reaches a mini-
mum, then increases, eventually often exceeding the original
�unloaded� resonance frequency of the plate. This behavior
has a simple understanding in terms of a resonance within
the grains, whereby the real part of M̃��� can take on nega-
tive values. �See Sec. VII B, below.�

Generally speaking, we find that M̃��� exhibits a sharp
resonance, which, as one part of our analysis, we interpret in
terms of an effective sound speed, albeit one that is depen-
dent upon the depth of filling of the cavity, and a broad tail
that decreases roughly as �−1/2, which we interpret in terms
of an effective viscosity. These general features have been
observed previously, by others �4,5� using similar measure-
ments. It is to be emphasized that our experiments are all
done in the regime of linear �small amplitude� acoustics; this
viscosity is not relevant to a granular flow, e.g., in a pipe or
in a loading hopper. Each of our two interpretations is based
on toy models, which assume that the entire effective mass is
borne by the bottom of the cavity or by the walls, respec-
tively. A concrete example of the former behavior is provided
by the effective mass of simple liquids; we demonstrate how
our technique enables us to measure the density and the
sound speed of four different liquids.

We have developed molecular dynamic simulations to

analyze the expected behavior of M̃��� under the assumption
that the contacts are described by dampened Hertz-Mindlin
theory, with or without possible global dampening due to the
viscosity of the air. We have found that there is an acoustic
Janssen effect in the sense that, at any frequency, approxi-
mately one-half of the effective mass rests on the bottom of
the cavity and one-half on the side walls. Thus, the toy mod-
els have only qualitative validity. Notwithstanding, it is rea-
sonable to use them to extract approximate values for the
sound speed and the viscosity of our granular ensembles.
Finally, our simulations as well as our experiments on the

effects of humidity on M̃��� indicate that the dominant mi-
croscopic mechanism for dampening is at the grain-grain
contact level and is not due to global viscous dampening.

We show that this dampening is much larger for high
humidity systems than for low ones leading us to conclude
that the mechanism is related to the viscosity of the adsorbed
water in the region of the contacts. Such a conclusion ac-
cords with the finding in “room-dry” sedimentary rocks that
acoustic attenuation is caused by stress-induced diffusion of
adsorbed layers of volatile molecules �11� and, more re-
cently, by direct measurements of acoustic attenuation in dry
and weakly wet granular media �12�.

The organization of the paper is as follows: we describe
our experimental technique in Sec. II. There are two types of

measurements here. In addition to measuring M̃���, we also

measure the resonant frequencies and dampening rates of
flexural normal modes in a rectangular bar having a grain-

filled cavity in it. We show how the measured function M̃���
can be used to compute the effect of the granular medium on
the resonant frequency and dampening characteristics of a
structure in Sec. III. This is illustrated schematically in Fig.
1. When the cavity in the bar is filled with grains, its own
resonance frequency is changed from f0 in the unloaded state
to fR, which is complex-valued, reflecting the attenuation in

the problem. Additionally, the effective mass, M̃���, gener-
ally has its own �complex-valued� resonance frequencies, fg.
It may happen that one or more of these resonances is mani-
fest as subsidiary resonances within the grain-loaded bar sys-
tem, although the complex-valued resonance frequency is
changed by virtue of the bar’s compliance.

Next, in Sec. IV, we discuss some rather general proper-
ties of the dynamic effective mass, considered as a causal
response function. We analyze a model in which we treat the
granular medium as a collection of rigid objects interacting
via contact forces between them. We also analyze simple,
continuum mechanical models. Sec. V is devoted to an
analysis of our data in the context of these continuum models
which are useful for understanding features such as the main
resonance, fg, and the high-frequency tail. Here, we analyze
data on cavities filled with simple liquids, as well as data on
our granular media. In order to get a sense of whether contact
dampening or global dampening is the dominant mechanism
in granular media, we have performed a series of numerical
simulations, which we report in Sec. VI. In Sec. VII, we

investigate the effect of differing humidities both on M̃���
and on the flex bar resonances. By means of these data, it
becomes clear that the dampening is local, due to the viscous
adsorbed films of water in the contact region. We summarize
our conclusions in Sec. VIII.

FIG. 1. �Color online� Schematic of measurements: the effective

mass, M̃���, is determined by simultaneously measuring the accel-
eration, a���, and force, F���, on an oscillating cup filled with

grains. Using the measured M̃���, we show how to predict the
acoustic properties of a resonance structure having the same grain-
filled cavity. Here, fg represents a resonance frequency within the
granular medium, f0 represents the resonance frequency of the un-
loaded structure, and fR represents the resonance frequency of the
loaded structure. In general, these resonance frequencies are
complex-valued.
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II. EXPERIMENTAL PROCEDURE

A. Effective Mass of Granular Media

A cylindrical cavity �of diameter 2.54 cm and height 3.07
cm� excavated in a rigid Al cup is filled with tungsten par-
ticles. Each of these particles consists of four or five equal-
axis particles, of nominal size 100 �m, fused together. �See
Fig. 4, below.� The individual grains are far from being iden-
tical; using a microbalance, we measured the individual
masses of 19 of these grains from which we deduce the av-
erage mass of an individual grain to be mg=44.2�18.0 �g.
The large density of tungsten maximizes the effects we are
studying. The cup is subjected to a vertical sinusoidal vibra-
tion at angular frequency �; the resulting acceleration is
measured with either one or two accelerometers attached to
the cup, on the underside to one side of center �see below�,
and the force is measured with a force gauge mounted be-
tween the shaker and the cup. Taking into account the mass
of the empty cup, Mc, we have

M̃��� + Mc =
F���
a���

, �1�

where the effective mass of the granular medium, M̃���
=M1���+ iM2���, is complex-valued, reflecting the partially

in-phase, partially out-of-phase motion of the individual
grains, relative to the cup motion. As we shall see, M1 may
be conceptualized as an inertial effect, in the conventional
sense, except that it depends upon an interplay between the
masses of the individual grains and the stiffnesses of the
grain-grain contacts; M2 describes the attenuative aspects of
the medium.

Of course, there is no such thing as a perfectly rigid cup.
We have used a variety of different cups of slightly different
geometries, with the intention that the apparent effect mass
of the empty cup should be approximately frequency-
independent. In Fig. 2, we show the results for one such cup
plotted over a fairly wide frequency range. We show both the
empty cup data �dashed lines� and the filled cup data �solid
lines�. Depending upon the way in which the cup is filled
with grains, either by slightly tapping on the cup �black
curve� or by mechanically compacting the grains with press
and plunger �green curve� we get quite different results, as
discussed below. We note that the effective mass of the
empty cup is essentially a frequency-independent constant,
as expected. This result is a consequence of our use of two
accelerometers on either side of the bottom of the cup, and
taking the average. In either accelerometer there is a visible
resonance structure around 6 �kHz�, which seems to be a
consequence of a “wobble” motion; the cup does not, liter-
ally, oscillate along a vertical axis. By averaging the two
accelerometer signals, this wobble motion is effectively can-
celed. In this way, we have improved on the technique re-
ported in Ref. �6�.

We note from Fig. 2 that in the low frequency limit, M̃���
tends to the static mass of the grains. Also, there is a rela-
tively sharp resonance peak whose position depends strongly
on the manner in which the grains were prepared; there are
also subsidiary resonances at higher frequencies. Although
the data in Fig. 2 are for the tungsten grains, we have shown

previously that these general features of M̃��� are present in
other granular media, such as spherical glass beads or spheri-
cal lead beads �6�. In this article, we focus on the tungsten
granules, simply because the effect is maximal for such
dense particles.

B. Resonant Bar

We consider the resonant frequencies of a rectangular bar
of stainless steel whose dimensions are L X W X H
=20.32 cm�3.81 cm�3.18 cm. In the center of the top
surface, a cavity is excavated having virtually identical di-
mensions as that in the shaker cup �Fig. 1�. This cavity is
filled with tungsten granules in the same manner and with
the same mass as that held in the shaker.

We monitor the flexural modes of the system: the bar is
suspended by wire supports attached at the approximate lo-
cations of the displacement nodes of the fundamental flex
mode of the bar �Table III.2 of Ref. �13��. The purpose here
is to minimize any additional dampening in the experiment
due to radiation of energy into the bar supports. On the top
and on the bottom of the bar, near each of the ends, we epoxy
piezoceramic disks of 6.35 mm diameter and 3.18 mm thick-
ness. The two top disks are driven in-phase with each other
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FIG. 2. �Color online� Measurement results using one specific
shaker cup over a wide frequency range. The top row represents the
measured force, the middle row the acceleration, and the bottom
row the effective mass. The left column represents the magnitude
and the right column the phase relative to the driving voltage on the
shaker, except that the bottom row shows the real, M1, and the

imaginary, M2, parts of M̃���. The dashed curves represent the
empty cup. The black curves are for a cup that was filled by simply
tapping it, whereas the green represents the mechanical compaction
protocol, as described in the text. The measured effective mass of
the empty cup, shown as a dashed curve, is essentially a frequency-
independent constant, which constant is subtracted from the total
effective mass to yield that of the granular medium.
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while the bottom two are driven out-of-phase with those on
top. In this configuration, the four disks act as a bending
moment on the bar, thus inducing the desired flexural mo-
tion. We mount an accelerometer on the bottom directly un-
der the center of the cavity. The bending moment is driven at
a constant voltage as the frequency is swept in increments
that are finely spaced when the Q is large �as for an empty
cavity� and more coarsely spaced when the Q is low, as when
the cavity is grain loaded. The output of the accelerometer,
a���, shows a characteristic resonance peak as we sweep
through the resonance.

We take the power dissipated in the vibrating bar to be
P���� �a����2 /�2. This quantity is plotted, in arbitrary units,
in Fig. 3. The real part of the resonance frequency, fR, and
the quality factor, Q, may be taken from the peak and the
full-width at half-maximum of this curve. See pages 23 ff. of
Kinsler and Frey �13�.

This technique of finding fR and Q works well when there
is an isolated peak and the background power absorption is
small. However, in many cases during our experiments, there
are two nearby peaks with significant overlap between them
and/or there is a significantly large background absorption.

For such situations, there are established procedures for ex-
tracting fR and Q. They assume specific functional forms for
the response function in which the parameters therein are
adjusted to achieve a best fit to the response data �14�. We
have taken a different approach, which assumes only that the
data represent a sampling on the real axis of an analytic
function of complex frequency.

We record the complex-valued data for the acceleration of
the bar, a��i�, as we do for the cup, where ��i� is the set of
discrete measurement frequencies. We analytically continue

the auxiliary function g =
def

1 /a using a rational function tech-
nique �Bulirsch-Stoer algorithm� �15� �see also Appendix B�.
It is relatively simple to search for a zero of this analytically
continued function �g��R�=0� using Muller’s method �15�.
We have

�R = 2�fR�1 − i/�2Q�� = 2�fR − i� , �2�

where � is the decay rate of the mode. We find that this
technique is highly reliable. As far as we are aware, it has not
previously been reported in the literature.

FIG. 3. �Color online� Frequency scan of resonance in bar without �top� and with �bottom� tungsten granules. The dissipated power is
plotted in the left column and the phase of the accelerometer, relative to the driving voltage on the benders, is plotted in the right. Note that,
in this example, there are two distinct resonances in the granules loaded bar. The red circles mark the frequencies at which the power is equal
to half its peak value. Note that there is a 90° phase shift between the two half-maximum points, as expected.
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We see from Fig. 3 that there is a very significant effect
due to the addition of the loose grains. When the cavity is
empty, and the frequency scanned with 0.5 �Hz� increments,
we find that, in the range 100 �Hz�	 f 	5 �kHz�, there is
only a single resonance: f0�empty bar�=3014 �Hz��0.1%
and Q0�exp�=1004�15%. When the cavity is filled with the
tungsten particles, and the bar is scanned in 10 �Hz� fre-
quency increments, there is a significant frequency shift for
the main resonance, fR�loaded�=2600 �Hz�, and increase in
attenuation: QR�loaded�=46. It is this latter feature that
makes granular dampening an attractive possibility for re-
ducing unwanted structure-borne sound. Moreover, there is
an additional mode that is not present in the unloaded bar.
The major thrust of this article is that these resonant bar
characteristics can be computed directly, based on the mea-

sured effective mass, M̃���; a detailed comparison between
theoretical predictions and experimental results, as a function
of humidity, is presented later in Sec. VII B using a theory
developed in Appendix A.

C. Sample Handling

A major concern for us is that we need to be able to
prepare the loose grains in the two cavities in a reproducible
manner. This will allow us to make meaningful predictions
about the resonant properties of the bar, using the measured
effective mass in the shaker cup. Granular media are notori-
ously hard to prepare reproducibly because they often con-
figure themselves into metastable states. For spherical grains,
it is relatively easy to get the grains into a state approximat-
ing random close packing, whose properties are quite repro-
ducible �16�. Our granular systems, however, do not lend
themselves easily to this. This is because each granule con-
sists of several sand-grain-like particles fused together. A
photomicrograph of a few of these granules is shown in Fig.
4. Although the main features of the effective mass are cer-

tainly reproducible, the details of the structure in M̃��� can
vary significantly enough from one filling to the next that,
unless precautions are taken, it prevents an accurate theory-
experiment comparison in the bar.

In Fig. 5, we show the reproducibility of the effective
mass for consecutive runs using each of the different proto-
cols. In the first row, we show the results of filling while
occasionally tapping to settle the grains. Next, we show the
result of vibrating the particulate medium at a frequency of 1
�kHz� over a range of acceleration amplitudes, 0	a
	30 �m·s−2� with a 93 g stainless steel plug resting on the
free surface. The plug ensures that the grains at the surface
experience a static pressure similar to that experienced at the
bottom of the particle pack. The protocol consists of system-
atically increasing the acceleration amplitude in steps of
5 �m·s−2�, holding for 2 min at each amplitude before in-
creasing to the next level. After reaching the maximum ac-
celeration amplitude �30 �m·s−2��, the procedure is reversed.
Therefore, the sample is exposed to 6 different acceleration
amplitudes, and the protocol consists of 11 total steps. The
procedure is similar to that employed by Nagel and co-
workers �16�.

The results indicate that vibrating the sample with a mass
on the free surface yields a fairly consistent M̃���. All of the
samples exhibit the same features, and these features are ob-
served at relatively consistent frequencies. The main reso-
nance in the grains is observed to occur over a slightly
broader frequency band �2.4–2.6 �kHz�� than that observed
when the sample is tapped. On the other hand, compared to
that observed after the sample is tapped, there appears to be
slightly better reproducibility in the shape and position of the
secondary features. It is interesting to note that the higher
degree of compaction achieved with the vibration protocol
shifts the main resonance to higher frequency, as compared
to that observed with the tapping protocol. In Sec. V B, we
will see that this shift can be interpreted as an increase in
effective sound speed in the granular medium.

Unfortunately, while reproducible, the effective mass so
obtained with this protocol varies with the orientation of the
cup relative to the shaker on which it is mounted. This effect
is demonstrated in the third row of Fig. 5. The effective mass
is reproducible for a single orientation, but it varies with
orientation. Evidently, the wobble effect we discussed earlier
is big enough to effect the packing of the grains, when we
vibrate at these high amplitudes. Therefore, the vibration
protocol is not optimal for handling the samples prior to a
transferability experiment because we cannot ensure that we
can duplicate the motion of the bar and the cup as we vibrate
it at high amplitudes during the preparation phase.

The most successful method for developing a reproduc-
ible loading was to mechanically compact the grains after
they had been loaded in their respective cavities. This proto-
col consists of using a mechanical testing instrument to im-
pose a sinusoidal stress on the free surface. To promote a
uniform imposition of the stress over the free surface of the
grains, we use a stainless steel plunger with a rubber pad
glued to the bottom surface. First, a static stress of 59.2 �kPa�
is imposed on the granular medium. Then, a sinusoidal stress
is imposed on the system consisting of 200 cycles at a fre-
quency of 0.25 �Hz�. The stress amplitude is systematically
varied between 39.5 and 118.5 �kPa�, in steps of 39.5 �kPa�.
To prevent unloading the system, the static stress is increased

125
�m

FIG. 4. �Color online� Photomicrograph of some tungsten gran-
ules used in the experiment. There is a 125 �m wire at the right,
for comparison.
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by 39.5 �kPa� for each equivalent change in stress amplitude.
After the maximum stress amplitude is achieved, the proce-
dure is repeated in reverse. So, the first two steps consist of
increasing, and the second two steps consist of decreasing
the stress amplitude. We have limited the maximum stress on
the grains to the low value of 118.5 �kPa��=1.185 �bar��,
specifically in order to ensure that we are not physically
damaging any of the grains. Overall, the system is exposed
to 1000 stress cycles �5 sets of 200� at systematically varied
stress amplitudes. In order to test the reproducibility of this
protocol, we have repeated the measurement by dumping out
the grains, repacking the same amount by weight of fresh

grains using the compaction technique, measuring M̃���,
dumping out the grains, repacking, etc. For the purposes of
comparing theory vs experiment in the bar data �Sec. VII B�,
we used the mechanical compaction protocol.

III. DAMPENING OF STRUCTURE-BORNE SOUND AND
THE EFFECTIVE MASS OF GRANULAR MEDIA

Subject to the validity of a few simple assumptions, it is

possible to use the measured effective mass, M̃���, to com-
pute its dampening effect on an elastic structure having an
“identical” grain-filled cavity. Let us suppose that there is an
acoustic structure which has a resonant frequency �0 when
the cavity is empty. The resonant frequency becomes
complex-valued in the presence of the granular dampening
mechanism: �=�0+
�. Here, Imag��� describes the ring-
down rate of the mode in the time domain or, equivalently,
the quality factor of the resonance in the frequency domain:
Q=−Re��� / �2 Im�����0. We make the approximation that
the grains contribute an additional mass-loading, which is
localized at position x1. Thus, the density may be written as

��x� = �0�x� + M̃���
�x − x1� , �3�

where �0�x� is the point-by-point density of the structure
when the cavity is empty. This assumption is essentially a
statement that we are considering only those normal modes
of the structure whose wavelengths are much larger than the
dimensions of the cavity. We make the further assumption
that the grain-filled cavity contributes negligibly to any
change in the effective elastic moduli of the host structure.
That is, the effective moduli of the grains, as seen by the
walls of the cavity, are much smaller than those of the host
material. In Sec. V B, we show that this is an excellent ap-
proximation for the effective masses and structures we are
considering here.

The equations of elastodynamics may now be recomputed
using this modified, and now frequency-dependent and
complex-valued, density. We demonstrate how to do this sort
of computation for the specific case of the fundamental flex
mode in a rectangular bar in Appendix A.

It is most useful, however, to consider the results of the
much simpler perturbation theory, which is valid to first or-

der in M̃���, considered as a small perturbation. The dis-
placement field obeys the usual equations of motion

− ��ui = �Cijkluk,l�,j . �4�

Here, � and Cijkl are the position-dependent density and elas-
tic constants of the material, ui�x� is the i-th component of
the displacement field, a comma denotes differentiation with
respect to that coordinate, and summation over repeated in-
dices is understood; �	�2 is the eigenvalue for the problem.
Written in this manner, Eq. �4� applies to any position-
dependent material constants, ��x� and Cijkl�x�, including
those with step discontinuities. We consider resonances such
that either the displacement field vanishes on the boundary
surface of the structure, u �S	0, or the stress tensor vanishes
on that surface, Cijkluk,l �S	0. Moreover, we assume that the
elastic constants, Cijkl, and the unperturbed density, �0, are

FIG. 5. �Color online� Effective mass, M̃���, measured on sub-
sequent packings of the shaker cup using four different loading
protocols. First Row: simple filling and subjective tapping. Second
Row: sinusoidal vibration, aligned cup. Third Row: sinusoidal vi-
bration, different cup orientations. Fourth Row: mechanical com-
paction with commercial press.
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real-valued, thus guaranteeing that �0, the resonance fre-
quency when there are no grains in the cavity, is also real-
valued.

Now, if the density is perturbed to take on a new value,
�=�0+
�, then there is a corresponding change in both the
eigenvalue �=�0+
�, and in the eigenvector, u=u0+
u.
Substituting into Eq. �4� and collecting all the first order
changes, one has

− 
��0ui
0 − �0�0
ui − �0
�ui

0 = �Cijkl
uk,l�,j . �5�

Multiply Eq. �5� by �ui
0�� �sum on i� and integrate over all

space. The term 
�ui
0���Cijkl
uk,l�,jdV can be integrated by

parts; the surface term vanishes because of the assumed
boundary condition �above�. The remaining volume integral
cancels the term −�0
�0�ui

0��
uidV �because u0 satisfies the
zero-order equation�. Thus,


� = −

�0� 
��x��u0�x��2dV

� �0�x��u0�x��2dV

. �6�

Applied to the case of interest, Eq. �3� for which 
��x�
=M̃���
�x−x1�, this now reads


� = − ��0I1

2M0

M̃��0� , �7�

where

I1 =
M0�u0�x1��2

� �0�x��u0�x��2dV

, �8�

in which u0�x� is the displacement field, and �0�x� is the
density, when the cavity is empty of grains. M0=
�0�x�dV is
the total mass of the structure when there are no grains in the
cavity. Written in this manner, I1 is dimensionless. In order
for this sort of theory to be valid, the granular media in the
two cavities must be substantially the same. In Sec. VII B,
we make such a theory-experiment comparison, but we have
had to go beyond the simple perturbation theory result for

two reasons: �1� the effective mass, M̃���, is not always
small. It can, in fact, take on values larger than that of the
steel bar. Perturbation theory cannot give an accurate de-
scription in these cases. �2� Some of the modes seen in the
bar+grains system are basically modes within the grains

�i.e., poles of M̃���� modified by the effect of the bar. Per-
turbation theory is silent as to the properties of these modes.
Nonetheless, for the modes which are primarily barlike, Eq.
�7� gives a useful intuitive way to think about the effects of
the granular medium on the resonance frequency and Q. Spe-
cifically, M1��0� determines the shift in the resonance fre-
quency and M2��0� determines the lowered Q, as is clear
from Eq. �7�.

We note in passing that the effective mass is, in reality, a

tensor, viz. M̃ij���, reflecting the fact that gravity plays a
major role in establishing stiffness and dampening at the
contacts. Equation �4� has an obvious generalization to the

case of a tensorial density, and Eq. �7� becomes


� = −
�0ui

0��x1�M̃ij��0�uj
0�x1�

2� �0�x��u0�x��2dV

. �9�

In this article, we are considering only situations in which
the cavity motion is strictly along the z axis, parallel to the
force of gravity. Thus, the only relevant component of the

effective mass being considered here is M̃zz���, which we
shall henceforth denote without the subscripts, but with this
understanding that there are other nonzero components of the
tensor.

IV. PROPERTIES OF M̃(�)

In this section, we first discuss some general properties of

M̃��� considered as a causal response function. Next, we
investigate some properties of the system in which we ideal-
ize the grains as being rigid particles which interact with
their neighbors via contact forces, of which there may be
different kinds. A specific motivation here is to analyze the
high-frequency behavior seen in our own measurements of

M̃��� within this discrete particles context. Finally, some of

the features we observe in M̃��� are suggestive of a collec-
tive motion in which the displacement varies slowly from
grain to grain. This suggests the possible approximate valid-
ity of continuum models, two of which we present here.

A. General

The effective mass, M̃���, is a causal response function in
that one may, in principle, apply an arbitrary time-based pro-
tocol to the acceleration of the cup and measure the force
induced by this protocol. As such, it has several general
properties, which we summarize here. These properties fol-
low on general principles as described in, e.g., Landau and

Lifshitz �17�. M̃��� is the Fourier transform of a real-valued
memory function

M̃��� = �
0

�

��t�ei��d� . �10�

Causality considerations specifically restrict the range of in-
tegration to positive values of � only. That is, in the time
domain, the force and the acceleration are related to each
other via the memory function, ��t�

F�t� = �
0

�

����a�t − ��d� . �11�

Inasmuch as only the past history of the acceleration matters
in Eq. �11�, its Fourier transform leads to Eq. �10�. If the
frequency, �, is extended to take on complex values, we see

that M̃��� is regular everywhere in the upper-half complex
plane. We also see from Eq. �10� that

M̃�− ��� = M̃���� , �12�

where an asterisk signifies complex conjugation. These con-
siderations lead immediately to the usual Kramers-Kronig
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relations between the real and the imaginary parts

M1��� =
2

�
P��

0

� xM2�x�
x2 − �2 dx
 �13�

M2��� = −
2�

�
P��

0

� M1�x�
x2 − �2dx
 , �14�

where � and x take on real values only and P� � denotes
principal part of the argument. �We are assuming there are no

singularities on the real axis and that lim�→� M̃���=0. See
Sec. IV B, below.�

One may just as well consider a time-based protocol for
an applied force and measure the induced acceleration of the

cup. Therefore, 1 /M̃��� is also a causal response function
and all the results quoted above apply to it as well, except for

the Kramers-Kronig relations. Thus, M̃��� has no zeroes,
poles, branch points, or singularities of any kind anywhere in
the upper-half plane. Inasmuch as only the constant functions
are analytic and bounded everywhere in the complex plane,

M̃��� must have singularities of some sort in the lower-half
plane.

The power dissipated in the system, averaged over one
cycle of oscillation, is

P = �Re�F�Re�v�� = �1/2�Re�Fv�� = �1/2��M2����v�2,

�15�

where v= ia /� is the velocity of the cup. Since P is always
non-negative, one has �M2����0, for real values of the
frequency. We see that this property is borne out by the data
in Figs. 2 and 5.

B. Systems of Discrete Particles

Let us consider a model in which each grain is considered
to be rigid except for the region near the contacts with its
neighboring particles. Let Xi be the equilibrium position of
the center of mass of the i-th particle, whose mass is mi, and
ui be its displacement from equilibrium. Similarly, �i is the
librational angle of rotation. If two neighboring particles
translate or rotate such that, their points of contact would
move relative to each other, there will be a restoring force
due to the contact forces. The linearized equation of motion
for the i-th particle is

− mi�
2ui = − Kiw · �ui + �i � diw − W�

+ �
j

Kij · �u j + � j � d ji − ui − �i � dij� ,

�16�

where dij is the vector from Xi to the point of contact with
the j-th grain. It is understood that the tensor Kij�	K ji� is
nonzero only for grains actually in contact with each other.
�We assume there is at most one contact per pair.� Similarly,
diw and Kiw refer to grains that are in contact with the sur-
faces of the cavity, whose rigid displacement is W.

The equation of motion for the angular variables is

− �2Ii · �i = − diw � Kiw · �ui + �i � diw − W�

+ �
j

dij � Kij · �u j + � j � d ji − ui − �i � dij� ,

�17�

where Ii is the moment of inertia tensor for the i-th particle.
In the special case that the particles are identical spheres,

we have dij = �1 /2��X j −Xi�, and the spring constant tensor
may be written in terms of normal �N� and transverse �T�
stiffnesses as

Kij = kij
Nd̂ijd̂ij + kij

T�I − d̂ijd̂ij� , �18�

where d̂ij is the unit vector and we use dyadic notation. Simi-
larly for the contacts with the walls. An example here would
be Hertz-Mindlin contact forces in which the stiffnesses in-
crease with increasing static compression but we also con-
sider forces of adhesion, capillarity, etc.

It is understood that, generally, each of the elements of the
tensors Kij or Kiw are complex-valued and frequency-
dependent reflecting the microscopic origin of the dissipa-
tion. For example, one may take

Kij��� = Kij
0 − i�Bij , �19�

in which the second term describes an interparticle force pro-
portional to the difference in velocity of the two grains. The
tensor Bij is analogous to a dampening parameter. In general,
Eq. �19� represents simply the first two terms in the Taylor’s
series expansion of K���. These “springs” may have rheo-
logical properties of their own. For example, if there is an
internal degree of freedom with relaxation time � it is easy to
show that

Kij��� = Kij
� +

Kij
0 − Kij

�

1 − i��
. �20�

The derivation of Eq. �20� parallels that of Eq. �78.6� in
Landau and Lifshitz �18�. A Taylor’s series expansion of Eq.
�20� for small � has the form of Eq. �19� for the first two
terms.

Notwithstanding the foregoing remarks, there are some
general conclusions one can draw from Eqs. �16� and �17�.
First, the total force which the cavity exerts on the grains is

F = − �
i

Kiw · �ui + �i � diw − W� = − �2�
i

miui, �21�

where the second equality follows because the interparticle
forces cancel, by Newton’s third law, as is clear from Eq.
�16�. Second, one can formally write the effective mass in
terms of the normal-mode frequencies of the system

M̃��� = �
n

An

� − �n
, �22�

where �n are the complex-valued frequencies for which Eqs.
�16� and �17� have nontrivial solutions when W is set equal
to zero. Each matrix An represents the strength of each reso-
nance. Also, from Eqs. �16� and �17�, it is clear that when the
frequency tends to zero one has lim�→0 ui=W and
lim�→0 �i=0. Therefore, in this limit, one has, from the sec-
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ond of Eq. �21�, F=−�2M0W, where M0=�imi is the total
static mass of the grains. Therefore, from the definition of the
effective mass, one has

lim
�→0

M̃��� = M0I , �23�

which seems obvious.
The high-frequency limit of the effective mass also has a

simple form. From Eqs. �16� and �17�, one has lim�→� ui
=0 and lim�→� �i=0, because of the dominance of inertial
effects. The particles do not move at all in this limit. There-
fore, in this limit, the first of Eq. �21� implies F
=�ilim�→� Kiw��� ·W which, in turn, implies

lim
�→�

M̃��� = −

lim
�→�

�
i

Kiw���

�2 . �24�

The high-frequency behavior of M̃��� is controlled by the
behavior of those springs connecting the particles directly to
the cavity motion. If, for example, these are strictly damp-
ened springs, such as implied by Eq. �19�, then

lim
�→�

M̃��� = i

�
i

Biw

�
, �25�

which is predominantly imaginary valued in this limit. On
the other hand, if the individual springs have their own rheo-
logical behavior, such as that implied by Eq. �20�, then

lim
�→�

M̃��� = −

�
i

Kiw
�

�2 . �26�

Should this latter case hold, then comparison with Eq. �13�
immediately gives an f sum rule on the absorptive part of the
effective-mass

�
0

�

� Imag�M̃����d� =
�

2 �
i

Kiw
� . �27�

So, if those grains that are in contact with the walls of the
cavity have spring constants that are real-valued in the high-
frequency limit, then the integrated absorptive part of the
effective mass is determined solely by those high-frequency
spring constants, independent of the details of the grain-grain
contact forces.

The potential usefulness of the results of this section is

that the high-frequency limit of the measured M̃��� may be
compared against Eqs. �24� and its variants. In our own ex-
periments, we are not able to probe frequencies high enough
to observe this behavior, as discussed in Sec. V B, below.

C. Continuum Models

On a semiquantitative level, we may understand the gen-
eral features of our experimental results, such as those in
Figs. 2 and 5, in terms of two oversimplified continuum
models whose main purpose will be to allow us to deduce
approximate parameter values from our data.

Model I: the granular medium is considered to be a lossy
fluid, with negligible viscous effects at the walls; that is, the
viscous skin depth �17� 
=�2� / ���� is small compared to
the radius of the cup, a. Here, � is the viscosity of the fluid;
� is the density. The effective mass is simply

M̃��� = M0 tan�qL�/�qL� , �28�

where L is the height of the fluid column, q=��� /K is the
wave vector in the fluid in terms of a �lossy� bulk modulus,
K=K0�1− i���. M0=�a2L� is the static mass in the cup. This

model presupposes that 100% of M̃��� is supported by the
bottom surface of the cup. For “small enough” values of the
damping parameter, �, resonance peaks, as seen in Fig. 6�a�,
occur when qL equals odd multiples of � /2, i.e., L equals
odd multiples of 1/4 wavelength: L=� /4,3� /4,5� /4.¯
These sharp resonances are examples of fg, the resonances
within the granular medium/liquid. The values of K0 and �
are chosen to mimic the observed frequency position and
resonance width, respectively, in the experiments. There is a
second resonance in Fig. 6�a� around 4500 �Hz�, but the
width of that resonance is nines times as large as the first
one, so it is scarcely visible in the plot.

We emphasize that this last feature, the resonance fre-
quencies being in the ratio 1:3:5:7…, is an artifact of three
assumptions in Model I: �a� there is no shear rigidity or shear
viscosity in the material. �b� The sound speed is constant
throughout the sample. �c� The attenuation parameter, �, is
small. We shall see that all of these assumptions are violated,
strictly speaking, under the conditions of our experiments on
real granular media.

Model II: the granular medium is considered to be a very
viscous fluid, which is infinitely compressible. This situation
may be approximately correct if the filling depth of the cav-

ity is much greater than the diameter so that most of M̃��� is
borne by the walls of the cup, little by the bottom surface. By
solving the Navier-Stokes equation for oscillatory motion in
a cylindrical geometry �17�, we find
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FIG. 6. �Color online� �a� Model I, a fluid with a lossy bulk
modulus. �b� Model II, a highly compressible, highly viscous fluid.
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M̃��� = 2M0J1��a�/��aJ0��a�� . �29�

Here, �=�i�� /�, and Jk�z� is a Bessel function of order k.
This model gives a broad peak with a slow decay at higher
frequencies as seen in Fig. 6�b�, much like that seen qualita-
tively in the granular data above the fundamental resonance.
We note, for future use, that the high-frequency limit of Eq.
�29� is

M̃��� → 2�aL�i��/� . �30�

This limit holds when the viscous skin depth �18�, 

=�2� /��, is much smaller than the radius of the cup. We

suppose, then, that the result M̃�����i /� holds generally,
for other geometries, but with different prefactors.

Is the high-frequency limit for this continuum model con-
sistent with what one might expect for a discrete system of
particles, with dampening due to their relative motion,
namely, Eq. �25�? Though one may expect viscous-like
dampening analogous to that described by Eq. �30�, at high
enough frequencies, the viscous skin depth becomes small
compared to the interparticle separation and there is a cross-

over from M̃ � �1+ i��−1/2 to M̃ � i�−1. This can be demon-
strated explicitly if one considers a one-dimensional string of
point masses, separated a distance b from each other, each of
which experiences a drag force proportional to the difference
between its velocity and its neighbor’s, viz. F=��v j −vi�.
This leads to the equation of motion for the ensemble

− m�2uj = − i���uj+1 − 2uj + uj−1� j = − N, . . . N �31�

subject to the boundary condition

u��N+1� = W . �32�

Equation �31� is a simple example of Eq. �19� in which Bij
=� if i and j are nearest neighbors and Kij 	0. It is simple
enough to solve for the effective mass implied by this toy
model. Let

y� =
2� − im� � i�m2�2 + 4im��

2�
. �33�

The dynamic effective mass of one such row is

M̃1D��� =
2i�

�
� y+

N+1 + y−
N+1 − y+

N − y−
N

y+
N+1 + y−

N+1 
 . �34�

If we imagine that there is a sequence of these chains, in
parallel with each other, all connected to the walls then Eq.
�31� is a discretized version of the linearized Navier-Stokes
equation for which the viscosity is ���b. The effective
mass per unit area of the side wall implied by the continuum
Navier-Stokes equation in this geometry is

M̃NS���/A =
2�

�
tan��T/2� , �35�

where T is the separation between the walls. Equation �35�
has a high-frequency limit analogous to Eq. �30�

M̃NS���/A → 2�i��/� . �36�

Taking into account the appropriate normalization of the rel-
evant constants, one may directly compare Eq. �34� against
Eq. �35�. This is done in Fig. 7, where we plot the imaginary
part of the effective mass implied by each of the models.
They agree with each other over much of the frequency
range. The peak around 300 �Hz� occurs when the viscous
skin depth is approximately equal to the wall separation, T.
Above that frequency, each model has a frequency depen-

dence M̃2��−1/2, as expected from Eq. �36�. When, how-
ever, the macroscopic viscous skin depth, 
=�2� /��, is ap-
proximately equal to the interparticle separation, b, the
discrete model, Eq. �34�, crosses over to a behavior implied

by Eq. �25�: M̃2��−1. In Fig. 7, this crossover is visible
around 3 �MHz�.

For the purpose of the analysis of our data in Sec. VII B,
we recapitulate the essential results of this simple model. If
the frequency is high enough that the intergrain springs are
dominated by the damping effect rather than the stiffness,
i.e., ��K /B viz. Eq. �19�, the system may be described in
terms of an effective viscosity. If the frequency is high
enough that the viscous skin depth is small compared against

the dimensions of the cavity, one may expect M̃2��−1/2. For

higher frequencies still, there may be a crossover to M̃2
��−1.

To be absolutely complete, we point out that, just as con-

tact damping could lead to a crossover from M̃2��−1/2 to

M̃2��−1 if the frequency is increased high enough, it is also
true that global damping could, in principle, exhibit the exact

opposite crossover behavior, from M̃2��−1 to M̃2��−1/2 if
the frequency is raised high enough. This is because eventu-
ally, the viscous skin depth in the surrounding air, 

=�2� /��, becomes small compared to �, the connected
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FIG. 7. �Color online� Comparison of a continuum vs a discrete
theory for a one-dimensional model of local contact dampening.
The discrete model closely follows the continuum result except for
frequencies high enough such that the macroscopic viscous skin
depth becomes smaller than the interparticle separation.
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throat size of the porous medium. For air at STP 

=22 �m at a frequency of 104 �Hz�, which is still relatively
large compared to the throat sizes of the pore space in these
materials, for which ��10 �m. See Ref. �19�. The viscos-
ity of air varies by less than 0.5% as the humidity changes
from dry to fully saturated �20�. We do not expect to see this
crossover in our experiments.

To summarize this section, we may say that there are sev-
eral distinct possible origins to the frequency dependence of

M̃. Within the context of the discrete model, such as embod-
ied in Eqs. �16� and �17�, one expects structure near those
normal-mode frequencies which are relatively near the real
axis, as implied by Eq. �22�. To the extent that a continuum
approximation may be relevant for some of the lower lying
modes, one may expect structure when the �wavelength of
sound/viscous skin depth� is comparable to the cavity dimen-
sions, examples of which appear in Figs. 6�a�, 6�b�, and 7.
There may be further structure at the frequencies for which
the continuum theory breaks down, an example of which is
seen around 3 �MHz� in Fig. 7. And finally, there may be
structure due to the fact that the springs themselves exhibit a
nontrivial frequency dependence, an example of which is
given by Eq. �20�.

V. EFFECTIVE MACROSCOPIC PROPERTIES

A. Liquids

A wide variety of real liquids satisfies the assumptions of

Model I. We have measured M̃��� for four simple liquids. In
Fig. 8, we show the results for a common, commercially
available, fluorocarbon, whose chemical formula is
N�CF3�CF2�4�3. By fitting Eq. �28� to this data, we are able
to extract the density, �, and the speed of sound: V=�K0 /�.
These values, measured with our effective-mass technique
for all four liquids, are cross-plotted against those deter-
mined by more conventional means �21,22� in Fig. 9. As
there is a good agreement, both for density and for sound
speed, we conclude that our technique for measuring the dy-

namic effective-mass M̃��� is an accurate one.

B. Granular Media

Encouraged by these results, we naively interpret the
main resonance in Figs. 2 and 5 as being a 1/4 wavelength
resonance of the compressional sound speed, i.e., analogous
to the resonances predicted by Model I. We investigated how
this resonance, fg, shifts to higher frequencies as the filling
depth, L, is reduced. Throughout the volume of grains in the
cup, the sound speed must be depth dependent; the gravity-
attributed stiffness is small at the surface and maximum at
the bottom. Nevertheless, we may estimate an effective
sound speed in the vertical direction based on this peak fre-
quency and on the filling depth of the tungsten particles

v�L� = 4Lfg�L� . �37�

Figure 10 shows these estimated speeds as a function of
filling level, L, for a cavity with diameter D=2.54 cm and
for cavities of differing diameters, all filled to the same level,
L=3.05 cm. For this figure, we have filled the cavities with
two different procedures: �1� we vibrate the cavity vertically
at 1 �kHz� with different acceleration amplitudes, as indi-
cated. �2� We fill simply by “tapping gently” on the side of
the cup. We note that the position of the main resonance in
the cup can be very different depending upon the filling tech-
nique. Nonetheless, these results show the trend of greater
speed with greater depth, as expected. The values we are
reporting �100–300 �m·s−2� are on the same order of mag-
nitude as those of other granular media reported in the litera-
ture using other techniques �2,4,9,23–25�.

In one case shown in Fig. 10, we first filled the cup by the
vibration measurement and then lightly tapped the side of the
cup. This caused the grains to pack less tightly and move the
main resonance to a much lower frequency, and thus a much
lower apparent sound speed.

Also in Fig. 10, we show our results for the effective
sound speed in cavities of differing diameters, D, filled to a
common depth. These data provide evidence of a kind of
dynamic Janssen effect in the sense that the side walls sup-

FIG. 8. Real part of the effective mass of a fluorocarbon fluid
compared against the theoretical prediction of Eq. �28�. The 1/4
wavelength resonance is visible around 6 �kHz�.
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port some fraction of the differential force as an effect of the
oscillation. In order not to confuse the issue with the dy-
namic Janssen effect reported previously for that observed in
cavities whose walls move at a constant speed �26�, we will
refer to the effect in the present paper as the acoustic Janssen
effect. If the side walls did not support the effective mass one
would expect the effective sound speed to be independent of
cavity diameter. We return to this point in our discussions of
numerical simulations, below. Suffice it to say that the results
of Fig. 10 rule out the strict applicability of an interpretation
of the main resonance peak based on Eq. �28�, Model I: the
sound speed is a function of depth and the material has a
shear rigidity. This observation, a sound speed in the range
100–300 �m·s−2�, implies the elastic moduli are in the range
K�1–9�107 �Pa�, which is orders of magnitude smaller
than the elastic constants of steel. Therefore, the presence of
the granular media in the cavity of the resonance bar contrib-
utes negligibly to the stiffening of that bar, as we have as-
sumed.

Because at least some of the effective mass is borne by
the side walls of the cavity, we may estimate the effective
viscosity of the granular medium based on the high-
frequency tail of the data, such as in Figs. 2 and 5. According

to Model II, the high-frequency tail of M̃��� should be pro-
portional to �−1/2, as in Eq. �30�, when the viscous skin depth
is small: 
����a. Roughly speaking, this is seen in the data
plotted in Fig. 11. �The data fit better to f−1/2 than to f−1

although not overwhelmingly so.� Taking into account the
prefactors, we conclude that the granular medium has an
effective acoustic viscosity �eff= �3–10��104 Poise. This
value of �eff implies a value of the viscous skin depth

�10 kHz��3 mm, which is both small compared to the
cup radius and large compared to the grain diameters thus
satisfying two of the underlying assumptions in Eq. �30�.
This value is just an order of magnitude estimate as the fluc-
tuations around the f−1/2 behavior are quite large and Model
II is, of course, an oversimplification and an overestimation
of the effects of the sides of the cavities. It is clear that, while

the data exhibit features of both Model I and II, neither
model captures the whole story. Nonetheless, if our estimate
of the macroscopic viscosity is approximately correct that
would imply that the crossover from M2��−1/2 to M2��−1

�i.e., Eq. �25�� occurs in the frequency range �2–8�
�106 �Hz�. This crossover happens when the macroscopic
viscous skin depth approximately equals the interparticle
separation, 
=b, as discussed in connection with Fig. 7. If
this crossover happens at all, it would seem to be well out-
side our experimentally accessible measurement range.

In a similar vein, we may conceptualize the effective elas-

tic constants as K̃���=Ko− i�� from which we deduce that a
crossover from elastic-dominated to viscous-dominated be-
havior occurs at a frequency �e−v�Ko /�, which is approxi-
mately 15 �kHz� for the granular systems we have studied.
We may very well be seeing this crossover at the higher end
of our frequency range in Fig. 11.

To summarize this section, we have found some evidence
that there is an effective macroscopic viscosity in the sense
of Eq. �30� being approximately correct. This, in turn, sug-
gests that we should not see behavior implied by Eq. �25�,
unless the frequency is much higher than we are investigat-
ing; we don’t see that behavior, much less that suggested by
Eq. �26�. Even at our highest frequencies, the granular sys-
tem is undergoing collective oscillation, albeit a complicated
one: it is not the case, even at our highest frequency, that
only those grains in contact with the walls are contributing to

M̃���.

VI. SIMULATIONS

The toy models are illuminating as far as they go, but to
obtain a deeper understanding of the dampening mechanism
on a microscopic level, we have performed molecular dy-

namic simulations of M̃���. Here, we consider the much
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simpler system of spherical beads confined in a rectangular
box.

In our simulations, a static packing at a predetermined
pressure is first achieved by methods previously described
�27�, and then we incorporate walls, friction, and the force of
gravity. The simulations consider the typical Hertz-Mindlin
contact forces for the normal and tangential components, re-
spectively, and the presence of Coulomb friction between the
particles characterized by a friction coefficient �. See Ref.
�27� and references therein for a discussion of the underlying
physics of these contact forces.

Microscopic dampening is provided by two principal
mechanisms of dissipation: �a� local dampening, in which the
force is proportional to the relative velocity between two
contacting grains �28,29�. Examples of this form of dampen-
ing include intrinsic attenuation due to asperity deformation
�28�, and wetting dynamics within the liquid bridges between
adjacent grains as they move relative to each other �30,31�.
�b� Global dampening, in which there is a presumed rota-
tional and translational drag due to a viscous fluid, such as
air, which is assumed to move with the walls of the cavity.
See �29,32,33�. Within the context of Eqs. �16� and �17�, the
global dampening approximation is that the particles not in
direct contact with the walls still experience a drag effect
such that Kiw=−i�Bw, where Bw is the same for each grain.
The conclusions we draw from our numerical simulations are
relatively insensitive to the assumed values for the dampen-
ing parameters, either global or local. We plot some typical
results in Fig. 11, where we indeed see that the local damp-
ening hypothesis implies M2��−1/2, and the global dampen-
ing is more consistent with M2��−1. The data are quite
noisy and the distinction between f−1/2 and f−1 behavior is
not clear-cut, although the fit to f−1/2 is somewhat better. In
Sec. VII B, we demonstrate quite unequivocally that contact
damping is the operative mechanism in the experimental
data.

Results are displayed in Fig. 12 for a system in which
there is assumed to be only local contact dampening. The
two cases shown correspond to normal and transverse con-
tact forces �a� and normal forces only �b�. The fundamental
resonance and the broad high-frequency tail are clearly evi-

dent. We show, separately, the contribution to M̃��� from the
bottom as well as from each of the side walls. The conclu-
sions we draw from the numerical modeling are the follow-
ing:

�1� an acoustic Janssen effect reveals that Models I and II
�Sec. IV C� are equally important to an understanding of the
dynamics. Figure 12�a� shows the results of the effective
mass at the bottom and on the walls of the cavity, as a func-
tion of the frequency, for a system with friction coefficient
�=0.5. For all frequencies, we find that approximately one-
half of the mass is held by the bottom and the other half by
the side walls. In this sense, one cannot make the distinction
between the simplified models. Our depiction of an effective
sound speed as a function of filling level, Fig. 10, is really
just a manner of speaking. When the friction is switched off
��=0, Fig. 12�b��, almost all the weight is supported by the
bottom walls of the cavity, as expected, since the effective
shear modulus becomes negligibly small �27�; therefore, the

Model II effect essentially disappears. �A small component
of the weight is held by the walls because they are made of
glued particles in the simulations.� Not surprisingly, we still
see the resonance peaks as predicted by Model I.

We note that our results for the effective sound speed
measured in cavities of different diameters but filled to the
same depth, plotted in Fig. 10, provide an experimental in-
dication of an acoustic Janssen effect. If the side walls did
not support the effective mass, one would expect the effec-
tive sound speed to be independent of cavity diameter.

�2� Simulations allow us to differentiate between possible
different microscopic origins of dissipation. We find that ei-
ther global or local dampening can capture the main features
of the experiments: the main resonance peak, as in Model I,
and a broad background, as in Model II. However, the high-
frequency asymptotic behavior for large � is very different

for the two mechanisms. Global dampening predicts M̃���
� i�−1, as per Eq. �25� where Biw is nonzero for every par-
ticle. Roughly speaking, this can be seen in the result plotted
in Fig. 11. On the other hand, as long as the viscous skin
depth �2�eff /�� is large compared to the grain size but small
compared to the cup radius, then contact dampening predicts

M̃�����i /��1/2, as in Model II. This trend is seen in the
numerical simulations based on contact dampening plotted in
Fig. 11. Although the simulation result is noisy, we may con-
clude that there is an effective viscosity, as is seen in the
experimental results. Contact dampening can be caused by
viscoelasticity of the grains themselves or it can be induced
by liquid bridges at the contact points �30,31,34,35�. We are
inclined to suppose it is the latter that dominates in our
samples and this has motivated us to consider the effects of

humidity on our results, both for M̃��� and for the reso-
nances in the bar. We present our results in the next section.
For reasons that will become apparent, we need to develop a
quantitative theory of the bar resonances that goes beyond
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the perturbation theory, which we also describe in the next
section.

VII. DETAILED THEORY OF FLEX BAR RESONANCES

The perturbation theory described in Sec. III is informa-

tive but in some situations M̃��� takes on very large
values—larger even than the mass of the bar itself, thus in-

validating the assumption that M̃��� is a small perturbation.
Moreover, there are resonances seen in the loaded bar that
are primarily resonances within the granules themselves; per-
turbation theory is not able to make any prediction about
these resonances. For situations such as these, it is necessary
to go beyond the perturbation theory and use a more com-
plete theory. For the case of a rectangular bar, the flex mode
resonances, including the effect of the granular medium, can
be computed directly. This technique is described in Appen-
dixes A and B. Basically, the theory treats the bar as a one-
dimensional object for which flex waves are described by the
so-called Timoshenko beam theory �36�. The extra compli-
ance near the center of the bar, due to the existence of the
cavity, is modeled by a single parameter, �, whose value is
set by the resonance frequency when the cavity is empty.
There are no other adjustable parameters. As before, though,

we treat the effective mass of the grains M̃��� as a localized
point density.

At each �complex-valued� frequency there are two left-
going and two right-going waves. The amplitudes of these
four components are determined by the requirement that four
homogeneous boundary conditions must be satisfied. The
normal-mode condition is that the determinant of these coef-
ficients must vanish; we search, numerically, for the
complex-valued normal-mode frequencies, ��R�, at which
the determinant vanishes.

We compare the results of this theory, first against reso-
nance bar data taken when the cavity is filled to different
depths with various liquids, and then to data taken when the
cavity is filled with granular media, under conditions of dif-
fering humidity.

A. Liquids

In Sec. V A, we showed how the effective-mass measure-
ments on simple liquids gave results in general agreement
with the predictions of Model I, Eq. �28�. It is natural to
inquire whether the theory described in Appendix A can ac-
curately predict the frequency shift in a resonant bar whose
cavity is filled to varying depths with such a simple liquid. In
Fig. 13, we show the measured results of the flexural reso-
nance frequency of the bar when the cavity is partially filled
with the liquids considered in connection with Fig. 9. The
solid curve represents the predictions of the theory described
in Appendix A, assuming the effective mass within the cavity
is frequency-independent. Over the range of added mass val-
ues, the full theory is nearly the same as the predictions of
the perturbation theory, Eq. �7�. We have determined I1
�2.1 for the fundamental mode in our bar, reflecting the fact
that the displacement at the center is much larger than the
average RMS displacement. For large enough values of

added mass, the resonance frequency predicted by the full
theory asymptotes to a finite frequency, reflecting the fact
that even if the center of the bar is pinned, the two arms may
still oscillate freely. The difference between the full theory
and the perturbation theory is quite large for added masses
on the order of 500 g, which is off the scale of Fig. 9. The
data mostly lie on the theoretical curve except for the data
points greater than 20 g, which correspond to a fluorocarbon
fluid. For these data points, it is simple enough to estimate

M̃���, evaluated at the measured resonance frequency, using
Eq. �28�. With this correction to the added mass, all the data
for the simple fluids now lie nearly on the theoretical curve,
which gives us confidence in our approach.

B. Granular Media-Humidity Effect

In order to elucidate the physical origin of the dampening
mechanism, we have undertaken a controlled study of the
effects of humidity on these systems. Both the shaker cup
and the resonant bar are filled with the same amount of
grains, by weight, of tungsten particles. They are packed into
their respective cavities using the mechanical compaction
protocol described in Sec. II C. Both the shaker apparatus
and the resonant bar are placed in a hermetically sealed glove
box. The humidity is controlled by placing an open pan of
salt-saturated water inside, as well. We have used different
salts in the water as a means of controlling the humidity. We
use a low power fan to provide a continuous flow of air
throughout the container. The temperature is held at T
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=26.5 °C. The glove box sits on a vibration isolation table.
The motivation here is to allow for equilibration of humidity
on a reasonable time scale and to not allow for extraneous
vibrations to dislodge the grains in the cavities.

In Fig. 14, we show a comparison of the measured and the
computed resonance frequencies in the bar as a function of
elapsed time. We also show how the humidity is changing, as
we swap one salt-saturated solution for another. �The “zero”
humidity cases are accomplished with a desiccant.� There are
several different resonance frequencies that were measur-
able. For each of them, we have determined the complex-
valued resonance frequency, f̃R, using the procedure de-
scribed at the end of Sec. II B. The width of each resonance
is indicated with the error bars. That is, what is plotted is
Re� f̃R� and Re� f̄R�� Im� f̄R�. Using the simultaneously mea-
sured M̃��� in the shaker cup, we are able to compute the
expected �complex-valued� resonance frequencies in the bar,
using the theory described in Appendixes A and B. These
computed resonance frequencies are depicted in the same
manner as the measured ones, in Fig. 14. The horizontal
dashed line is the resonance frequency in the unloaded bar,
f0. Its Q is so high ��1000� that the width �a few Hertz� does
not show on the scale of Fig. 14; see Fig. 3, top. The other
dashed curve in Fig. 14 plots the position and width of the

main resonance frequency seen in M̃���, fg.

A few selected plots of M̃��� are shown in Fig. 15. The

main resonance in M̃��� is clearly visible in Fig. 15 but, in
fact, there is another resonance of smaller amplitude, around
4500 �Hz� for the 43% and 73% humidity cases, which is
barely visible in Fig. 15.

There are several interesting features to the data of these
two figures. First, from either Fig. 14 or Fig. 15, we see that

the position of the main resonance within M̃��� starts at a
low ��2000 �Hz�� frequency when the humidity is initially
zero. It then increases as the humidity increases to 43% then
again to 73%. Concomitantly, the width of that resonance
also increases; the system of loose particles is becoming
more dampened with increasing humidity. Second, there is
generally quite good agreement between theory and experi-
ment as to the position and widths of the several different
resonances in Fig. 14. Third, although the strongest reso-
nance in the bar around 3 �kHz� dominates, there are also one
or two other resonances, which we associate with the dynam-
ics within the granular medium.

We have noticed that, of the two resonances seen in the
bar in the region 2000–3500 �Hz�, one of them has a signifi-
cantly larger amplitude than the other, as is clear from the
example shown in Fig. 3, which corresponds to t
=41 hours in Figs. 14 and 15. This “stronger” resonance is
labeled with filled symbols, for both the measured and com-
puted resonances, in the legend of Fig. 14; the others are
labeled with open symbols. Our interpretation is that the two
“bare” modes, the resonance in the empty bar at f0, and the

resonance in M̃��� at fg, have coupled to each other to yield
two hybrid modes in the bar+grains system, an upper branch
and a lower branch. The resonance with the larger amplitude
corresponds to a mode which is predominantly barlike.
When fg	 f0, at early times, the real part of the effective
mass is negative in the vicinity of f0. Although the theoreti-
cal calculations were done with the complete theory of Ap-
pendix A, it is useful to consider the qualitative predictions
of the perturbation theory. According to the predictions of
Eq. �7�, one may expect the resonant frequency in the bar
should increase relative to that of the empty bar due to this
negative mass-loading, and this is just what we see in the
upper branch. At slightly later times, when the humidity is
increased to �70%, fg has increased above f0, with the result

that the real part of M̃��� is now positive, in the region
around f0. Now, according to the perturbation theory, the
resonance frequency in the bar should decrease and this, too,
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is just what we see. An analogous behavior was seen in the
data of Kang et al. �10�, who considered the behavior of the
resonance frequency of a clamped plate as more and more
loose beads were placed atop it. Our view of their experi-
ments is that, for low values of mass-loading, the resonance
frequency, fg, in their grains, is higher than the resonance
frequency of their plate. Thus, the real part of their effective
mass is positive and the resonance frequency is initially low-
ered, relative to the unloaded value. If the depth of loading is
large enough, fg drops below the plate resonance frequency
and the real part of M̃��� can become negative. This is our
explanation of why the observed resonance frequency may
then increase, relative to the unloaded value.

Although the frequency of the upper branch in Fig. 14 is
relatively slowly varying, it very abruptly changes character,
from “barlike,” at the early times, to “grainlike” later. The
lower branch shows the opposite behavior. This aspect of the
response of the system will be analyzed in detail elsewhere
�37�.

When the system is at 90% humidity, it behaves quite
differently. �There is an initial drop in humidity, which is an
artifact of our procedure for swapping in and out the salt-

saturated solutions.� The main resonance in M̃��� initially
drops to around 2200 �Hz�, but, more significantly, it be-
comes very much broadened relative to that at the lower
humidities, cf. Figure 15. We do not understand the initial
drop in the resonance frequency; conceivably, it is related to
the initial drop in humidity. At this humidity, we were able to
locate only one resonance in the experimental bar data and
we were also able to locate only one in the theoretical com-
putations. As time goes on, maintaining the humidity in the
glove box constant, we see from Figs. 14 and 15 that the

main resonance in M̃��� increases with time. It increases
with time for the lower humidities, too, though it is most
pronounced for 90% humidity. Previously �6�, we analyzed
this aspect of the data in the context of an assumed distribu-
tion of asperity heights within the contact region. With time,
more and more of the energetically favorable asperity re-
gions become filled with condensate, assuming they are
smaller than the Kelvin radius, Eq. �38�, below. Under a
fairly broad set of assumptions, this lead to the prediction
that the contact stiffnesses would increase approximately
logarithmic in time, which is what was observed. The data
sets analyzed in Ref. �6� were, however, prepared using the
vibration protocol described earlier in Sec. II C, unlike the
data in Figs. 14 and 15. Nonetheless, we believe that this is
what is happening: At any given level of humidity, there is a
relatively slow process of equilibration leading to a relatively

slow increase in the resonance frequency within M̃���.
Finally, when the salt solution is replaced with a desic-

cant, causing the humidity to drop to essentially zero, there is
a very dramatic change in the properties of the granular me-
dium. According to Fig. 15, the main resonance has shifted
up to a very high frequency, �4300 �Hz�. It has become
extremely sharp, and extremely strong. Concurrently, in the
bar, there are two distinct resonances, the one primarily
within the grains, around 4500 �Hz�, and the other primarily
in the bar, around 2800 �Hz�. We note that both of these are
significantly sharper �higher Q� resonances than their coun-

terparts in the humid stages. We note that theory and experi-
ment are in general agreement as to the level of attenuation
of the various modes. Specifically, the attenuation of the bar
resonance ��3000 �Hz�� is much reduced in the dried out
state relative to that in the humid states.

We do not really know why we see two resonances in the
dry cases and one, two, or three in the humid cases, depend-
ing, but this seems to be the situation both for the theory and
the experiment. In the theory, for 90% humidity, one may
speculate that there is an additional resonance or resonances,
presumably related to the apparent resonance seen in Fig. 15,
but that it/they appear for very large values of the dampening
rate, i.e., well off the real axis. However, if they exist, we
have been unable to locate such resonances with our theoret-
ical machinery no matter what value we use for seeding the
mode search, as described in Appendix A.

In order to analyze the effectiveness of the granular me-
dium in attenuating the modes in the bar, at the various hu-
midities, we replot part of the data of Fig. 14 in Fig. 16.
Here, �	−Im��R� represents the decay rate of the ampli-
tude, A, of each mode, in the time domain, viz. A�e−�t. We
are quite pleased with the general level of agreement be-
tween theory and experiment, the exceptions occurring when
the system is still equilibrating to humidity changes, from 80
to 110 h. We note also that the agreement is generally better
for the barlike mode than it is for the grainlike mode. The
decay rate of the unloaded bar is so small, ��unloaded�
=9.4 �neper· s−1�, that it appears to be zero on the scale of
Fig. 16. We see from the figure that there is a monotonic
effect of humidity on the decay rate of the main resonance
within the granular medium, as shown in gold. Such is not
the case for the dampening coefficient of the mode, which is
predominantly barlike in the combined system. Even though
the humidity varies from 43% to 70% in the first 80 h, the
measured dampening rate of this mode exhibits only a small,
nonsystematic, variation. This variation is, however, cap-
tured in the theory. At t=80 hours, when the humidity is
raised to 90%, the measured and the predicted dampening
rates of this mode both increase enormously. When the salt-
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saturated solution is replaced with a desiccant the measured
and computed dampening rates drop to very small values,
much smaller than when the system was originally in the dry
state. �We note that the grains in the shaker cup seem to
equilibrate with humidity changes more rapidly than do the
grains in the bar, but eventually they tend to the same state.
Perhaps this is a consequence of the different flow patterns of
air in the vicinity of the two cavities in the glove box.�

Our observed humidity effect is very much analogous to
that seen in the results of D’Amour et al. �35�, who deduced
very similar behavior from their measurements of the
changes in resonance behavior of a quartz plate whose top
surface was covered with a monolayer of beads. They con-
cluded that the in situ drying of the contacts between the
beads and the quartz causes them to stick over a larger mi-
croscopic surface area, causing the asperities on the surfaces
in the contact zone to be partially crushed. This, in turn,
causes the stiffness of the contact “springs” to increase and
the dampening to decrease. A rough analogy would be when
one soaks tissue paper with water it is easy to make it stick to
a vertical surface; the mess is held up by the force of surface
tension. If it is allowed to dry, the force of adhesion to the
wall actually increases, even though the water is gone. That
is because as it dries, it also deforms, allowing a large area of
solid-on-solid contact to develop. This, basically, is what we
see in our own measurements. An AFM image of the surface
of one of the tungsten granules in Fig. 17 shows these as-
perities on the scale of 10–20 nm. Capillary condensation
within these asperities occurs when the Kelvin radius, rm, is
approximately equal to the asperity size where

rm = −
2�VL

RT ln�H�
= −

1.04 nm

ln�H�
, �38�

where � is the liquid vapor surface tension, R is the gas
constant, T is the absolute temperature, VL is the molar vol-
ume, and H is the relative humidity �38�. The numerical
value in the second equation is that which is appropriate to
water at 26.5 °C. Thus, at a relative humidity of 90%, the
Kelvin radius is approximately 10 nm, which is large enough
that a single liquid bridge engulfs all the asperities in the
contact region between neighboring particles.

We conclude, therefore, that the dominant mechanism of
acoustic dampening in granular media is due to the adsorbed

film of water which exists on the particles, an example of
contact dampening. In particular, the film in the region be-
tween two contacting grains undergoes a shear deformation
due to the relative motion of the two grains and thus it gives
rise to dampening due to the viscosity of the water in the
film. Conceptually, this may be thought of as an example of
the “squirt mechanism” �39�, which is operative as the domi-
nant attenuation mechanisms in sedimentary rocks at ultra-
sonic frequencies. In that case, there is clear evidence that
the pore fluid is squeezed in and out of microscopic cracks,
which exist within the cement material holding the grains
together.

The data in Fig. 16, especially the low attenuation in the
second dry state, clearly rule out global dampening or intrin-
sic dampening within the tungsten as being significant
mechanisms for dampening.

It is also clear from Figs. 14 and 15 that the adsorbed
films of water at the grain-grain contacts is a significant
mechanism for stiffness of the intergranular spring constants.
However, the sound speed data in Fig. 10 indicate that some-
thing like a Hertz-Mindlin contact forces must also be opera-
tive: Why else would the effective sound speeds be depen-
dent upon the cavity dimensions? Because of the odd shape
of our tungsten granules, it is difficult to analyze the relative
contributions to the grain-grain stiffness due to each of these
mechanisms. For the simpler geometry of a random close
packing of spherical glass beads, it is possible to do this
estimate, precisely because of the data of D’Amour et al.
�35� on a monolayer of beads lying on a vibrating quartz
substrate. From their published data, their Fig. 1 and Eq. �5�,
it is simple enough to estimate the strength of the spring
constants �� in their notation, not to be confused with our use
of � in our Eq. �29�� between the beads and the quartz plate.
We find, from their data,

��Single Bead:Exp.� = �1 – 7� � 104 �N · m−1� , �39�

depending upon the humidity, in their experiments. These
values are much larger than what one might expect for Hertz
contact theory in which the weight of the bead provides a
static compression and subsequent stiffness of the contact.
Equations �1�–�8� of Norris and Johnson �40� in which the
normal force, N, is the weight of a glass bead, gives

��Single Bead:Hertz� = 4.6 � 103 �N · m−1� . �40�

In doing this estimate, we assumed the relevant radius of the
contact is the radius of the bead itself, 100 �m; had we
assumed a radius equal to that of a typical asperity on the
surface of the bead, the computed stiffness would be orders
of magnitude smaller than Eq. �40�. This estimate is further
confirmation of the conclusions of D’Amour et al. �35� that
the stiffness of the contacts is due to surface forces. If, how-
ever, one considers the contact stiffness of glass beads at a
depth of 2.54 cm, compressed by the weight of the beads
above, one may estimate the expected stiffness predicted by
Hertz contact theory to be

��Hertz at Depth� = 2 � 104 �N · m−1� . �41�

Thus, we may say that the contact stiffness for grains near
the top surface of a granular-filled cavity—virtually any

FIG. 17. AFM image of the surface texture of a tungsten granule
showing asperities on the 10–20 nm scale. Note the differing verti-
cal and horizontal scales.
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granular-filled cavity—is due to humidity mediated surface
forces. However, for those grains a few centimeters deep,
Hertz-Mindlin contact theory is also important.

We conclude this section by pointing out that the mea-
surement technique of D’Amour et al. �35� is very much
analogous to our measurements on the flex bar. In both cases,
one is looking at changes in the resonance frequency of some
system due to the relatively small perturbation of the granu-

lar medium. In addition, our measurements of M̃��� repre-
sent a more direct measurement of the underlying physics of
the granular medium. In this regard, the humidity effect on

M̃��� is quite strikingly apparent, over a wide frequency
range as shown in Figs. 14 and 15. Although the dampening
factor for the bar under humid conditions is much greater
than that dry, the differences in the main bar resonance are
not nearly so great as in the effective mass itself.

VIII. CONCLUSIONS

We have shown how a measurement of the frequency-

dependent effective mass of a granular aggregate, M̃���, al-
lows us to predict, accurately, the effects of a grain-filled
cavity on the acoustic properties of a resonant structure. This
fact gives us a more direct access to an investigation of the
underlying physical mechanisms relevant to the dampening
effect of granular media on structure-borne sound. Crudely
speaking, we may think of these systems as having an effec-
tive speed of sound �small� and an effective viscosity �large�.
The dissipation mechanism occurs at the grain-grain contact
level as our simulations have indicated and our humidity
controlled experiments have made unavoidably clear. As the
humidity is increased, there is a large increase in the attenu-
ation of the fundamental resonance within the grains, Im�fg�,
which translates to a nonmonotonic, but calculable, variation
in the attenuation of the structural resonance in the bar,
Im�fR�. When the system is taken to a high level of humidity,
and then dried to the same level of humidity as it was at the
beginning, there is a dramatic reduction in attenuation and a
dramatic increase in stiffness of the grain-grain contacts, at
the end of this humid-dry cycle relative to that in the initial
dry state. We understand this effect in terms of increased
solid-on-solid contact area at the grain-grain contacts.
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APPENDIX A: TREATMENT OF BAR RESONANCES
USING TIMOSHENKO THEORY

The very simple one-dimensional theory of wave propa-
gation in a flexing bar �13� is not accurate enough for a
quantitative treatment of the effect of a granular effective
mass on the frequency shift and change in quality factor.
Basically, this is because the ratio of length to thickness of
our bar is not large enough �the frequency is not low
enough�. Accordingly, we start with the more sophisticated,
but still one-dimensional, theory developed by Timoshenko
�36�. The equation of motion for the vertical displacement is

EI
�4u

�x4 + �A
�2u

�t2 − �I� E

k�
+ 1� �4u

�x2 � t2 +
�2I

k�

�4u

�t4 = 0,

�A1�

where E is the Young’s modulus, A=wd is the cross-sectional
area of the bar in terms of its thickness, w, and depth, d. � is
the density of the bar and � is the shear modulus. �I is the
moment of inertia of the cross-section of the bar relative to
its midpoint: I= �1 /12�w2A for a rectangular bar. k is a shape
parameter that we take to be equal to �8/9� as is appropriate
for a bar of rectangular cross-section. The simple theory for
a flexing bar corresponds to keeping only the first two terms
on the left-hand side of Eq. �A1�.

At each frequency, which is in general complex-valued,
the solution can be written as a linear combination of four
linearly independent solutions

u = �A sin�q1x� + B cos�q1x� + C sinh�q2x�

+ D cosh�q2x��e−i�t, �A2�

where q1,2��� are determined by a direct substitution of Eq.
�A2� into Eq. �A1�. Because we are interested only in the
fundamental mode, which is symmetric with respect to x=0,
we need only consider the region 0	x	L /2. The coeffi-
cients �A ,B ,C ,D� are determined by the requirement that
certain boundary conditions be satisfied at the ends on the
bars, x= �L /2, and at the center, x=0. However, the coeffi-
cients A and C are not equal to zero, as we shall see, due to
the fact that the slope, �u /�x, is not continuous at x=0.

As we discuss in the main text, we assume the dynamic
effective mass is located at the point x=0 and we are treating
the bar as effectively a one-dimensional object. Taking into
account the missing mass of steel in the cavity, the density is

��x� = �0 +
M̃��� − Mh

A

�x� , �A3�

where �0 is the density of steel, Mh=�0�a2L is the missing
mass of steel taken from the cavity, and A is the cross-
sectional area of the bar. One of the boundary conditions is
that the net force exerted by the bar on the cavity must equal
the net mass times the acceleration, viz.

− �M̃��� − Mh��2u�0� = − �F�0+� − F�0−�� = − 2F�0+� ,

�A4�

where F�x� is the force that the bar exerts on the element x+.
Within the context of Timoshenko theory, it is specified in
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terms of specific spatial and temporal time derivatives of
u�x� �36�. Thus, Eq. �A4� gives one of the four necessary
boundary conditions on the coefficients �A ,B ,C ,D�.

The presence of the cavity at x=0 makes this region of the
bar very bendable. The radius of curvature in this region is
very much smaller than it is away from the cavity. We model
this effect as if the left and right halves of the bar are hinged
together such that the bending angle between the two halves
is proportional to the bending moment imposed by the bar

� �u

�x
�

0+
= ���0+� , �A5�

where ��x�, the bending moment, is also given in terms of
spatial and temporal derivatives of u�x�. The parameter �
characterizes the “bendableness” of the cavity region. �
=0↔ �u

�x �0+ =0 corresponds to no additional extra compliance,
whereas �→�↔��0+�=0 corresponds to a completely flex-
ible hinge. We determine the numerical value of � by the
requirement that the measured and computed resonance fre-

quency of the bar with an empty cavity, M̃ 	0, must match.
It is the only free parameter in the theory.

The remaining two boundary conditions are that, both the
force and the bending moment vanish at the end of the bar

F�L/2� = 0 �A6�

and

��L/2� = 0. �A7�

There are, therefore, four homogeneous linear equations in
the four unknowns X= �A ,B ,C ,D�, i.e., HijXj =0 and so the
determinant of the matrix of coefficients must vanish for any
nontrivial solution. We search for such complex-valued
roots, �R, such that det�H��R��=0 using Muller’s method
�15�. In general, there is a countably infinite number of such
normal-mode solutions. One must choose a set of three ini-
tial frequencies with which the algorithm initiates the search.
Generally, we have chosen the three to be of the form
�0.95,1.00,1.05��S, where the seed frequency, �S, may be
complex-valued. The normal-mode frequency to which the
algorithm converges, if any, depends upon the value of �S
that is chosen. In the case of the data shown in Fig. 14, the
value of the seed frequency needed to be very close to the
resonances around 4 �kHz�, but did not need to be very close
to the ones found near 3 �kHz�.

As a check, we have compared the theory vs experiment

for a similar steel bar having no cavity at all: M̃ 	Mh and
�	0. The dimensions of this bar are L X W X D=20.32
�3.05�3.81 cm and we used parameters �
=7830 �kg·m−3�, Vc=5800 �m·s−1�, and Vs=3100 �m·s−1�,
which we have measured ourselves on the steel samples.
There are two directions in which this bar can flex; we mea-
sured and we computed the fundamental resonance fre-
quency for each orientation. The results are shown in Table I.
We see that the predictions of the full theory agree with the
measured values to within a few tenths of a percent �better
than the accuracy with which the input parameters are
known�, whereas the predictions of the simple flex theory
differ by as much as 10%. The accuracy of the former ap-

proach is more than acceptable for our purposes whereas that
of the latter is not.

In order to implement the theory when the cavity is filled

with a granular medium, we need a means to compute M̃���
for complex-valued �, though the input data are limited to
real-valued �. We describe how to do this in Appendix B.

APPENDIX B: ANALYTIC CONTINUATION

OF M̃(�) FOR COMPLEX VALUES OF �

With the shaker apparatus, we have determined the dy-
namic effective mass for a series of real-valued frequencies:

M̃�� j�j=1, ¯ ,N. In order to use this information for pur-
poses of computing the resonance frequency in the flexing
bar, as described in Appendix A, we need to be able to evalu-

ate M̃��� for arbitrary complex values of �. This is because
the normal-mode frequency of the bar will be complex-
valued, reflecting the attenuation in the system. We have cho-
sen to do this analytic continuation using the rational func-
tion technique, a Bulirsch-Stoer algorithm, as described in

TABLE I. Comparison of measured and predicted resonance
frequencies for a bar with no cavity �Hz�.

Measured Full theory Simple theory

Flex Horiz. 3542 3529 3793

Flex Vert. 4272 4260 4741
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FIG. 18. �Color online� Test of rational function approximation.
The symbols represent the value of the function, Eq. �B1�, for val-
ues of z on the real axis. These 20 values are used to construct a
rational function approximation for arbitrary complex-values z. It is
compared against the original function for z=x−0.095i, where we
see that there is a near perfect overlay of the two functions.
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Ref. �15�. In essence, the algorithm approximates the func-
tion as a ratio of two polynomials—a rational function. The
algorithm has the property that the rational function passes
through each input datum exactly. Thus, any noise in the
input data does propagate. In order to test how well this
approach actually does the analytic continuation, we con-
sider the following simple function:

F�z� = − � 1

sin�z − ��5 − i���
+

2

sin�z − �7 − 0.1i��� . �B1�

We have evaluated this function for 20 different real values
of z, and these values are plotted in Fig. 18.

With these 20 values, we construct the rational function
approximation and plot it for values of z on a line in the
complex plane parallel to the x axis: z=x−0.095i. We also
plot Eq. �B1� on the same graph, where we see that the
rational function basically overlays the actual function, even
for values of z near one of the poles. In fact, the difference
between the two never exceeds 1%. This test gives us confi-
dence to use the rational function to analytically continue

M̃��� into the complex � plane.
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